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I have seen the future and it is very much like the present, only longer 

 

Kehlog Albran, The Profit 

 

 

 

In this chapter, we introduce the concept of a linear regression model and use it for describing and creating 

causal models for demand forecasting purposes. You will learn about preparing data to identify a 

regression model, and assumptions needed to validate model relationships involving appropriate drivers 

of demand. 

Transformations are important in the preliminary identification and diagnostic checking (residual 

analysis) stages of the model building process. Transformations of data should be performed to improve 

your understanding of what the data are trying to tell you; can make the assumptions of least-squares 

theory with normality assumptions valid, can have significant value outside the realm of model building, 

too, that is, in the evaluation and interpretation of data; and can also be applied effectively in presenting 

management with the results of a forecasting analysis. 

The diagnostic checking process, designed to reveal departures from underlying assumptions in a 

statistical forecasting model, is an important phase for demand forecasters to learn about. It can be a 

powerful visual tool for assessing the potential effectiveness of a forecasting model, isolating unusual 

values, identifying hidden patterns, and understanding the nature of randomness in historical data. 

 



What Are Regression Models? 

The term regression has a rather curious origin in studies of inheritance in biology, 

which showed that whereas tall (or short) fathers had tall (or short) sons, the sons were on average not 

as tall (or as short) as their fathers. This phenomenon was discovered by Sir Francis Galton, (1822-1911), 

and is called regression toward the mean. Thus, Galton observed that the average height of the sons 

tended to move toward the average height of the overall population of fathers rather than toward 

reproducing the height of the parents.  It has since been observed in a wide spectrum of settings from 

economic behavior and athletic performance to demand forecasting. Regression analysis is the principal 

method of causal modeling in demand forecasting. 

Demand forecasters begin a regression analysis by identifying the factors or drivers of demand 

(Chapter 1), called independent, causal or explanatory variables – that they believe have influenced and 

will continue to influence the variable to be forecast (the dependent variable).   

It is useful to categorize causal variables as internal or external. Internal variables, also called policy 

variables, can be controlled to a substantial degree by managerial decisions, and their future values can 

be set as a matter of company policy. Examples include product prices, promotion outlays, and methods 

of distribution. External or environmental variables are those whose level and influence are outside 

organizational control. Included here may be variables that measure weather and holidays, demographics 

such as the age and gender of consumers in the market area, decisions made by competing enterprises, 

and the state of the macro economy as measured by rates of economic growth, inflation, and 

unemployment. Normally a regression analysis will attempt to account for both internal and external 

causal variables.  

The forecaster’s beliefs about the way a dependent variable responds to changes in each of the 

independent variables is expressed as an equation, or series of equations, called a regression model. A 

regression model also includes an explicit expression of an error variable to describe the role of chance or 

underlying uncertainty.  

A model with a single independent variable is called a simple regression model. Multiple 

regression refers to a model with one dependent and two or more independent variables. 

A successful regression analysis provides useful estimates of how previous changes in each of the 

independent variables have affected the dependent variable. In addition, assuming that the underlying 

structure is stable, forecasts of the dependent variable can then be conditioned on assumptions or 

projections of the future behavior of the independent variables.  

For example, suppose that a regression analysis of the demand for a product or service indicates that 

price increases in the past, holding other things constant, have been associated with less than proportional 

reductions in sales volumes (i.e., demand has been price inelastic – see Chapter 11). This knowledge may 

be useful both for forecasting future demand and for adjusting product-pricing policy.  



The inelastic demand suggests that price increases might be improving profitability. Demand 

forecasts would then be made in light of the price changes that the company plans to institute.  

Similar feedback can be obtained through regression analysis of the influence of external economic 

variables such as the Gross Domestic Product (GDP). Although the firm cannot control the rates of 

economic growth, projections of GDP growth can be translated via regression analysis into forecasts of 

product sales growth. 

As a forecasting approach, regression analysis has the potential to provide not only demand 

forecasts of the dependent variable but useful managerial information for adapting to the 

forces and events that cause the dependent variable to change. 

Indeed, a regression analysis may be motivated as much or more by the need for policy information 

as by the interest in demand forecasting. It is important to note that no extrapolative forecasting method 

can supply policy information, such as how product sales respond to price and macroeconomic variables. 

When such information is desired, explanations are required, not merely extrapolations. The chapter-

opening quotation suggests that Einstein would have preferred the empirical approach to demand 

forecasting, which analyzes the data (“experience”) in terms of a model (“knowledge of reality”) that 

relates the dependent and independent variables. 

The Regression Curve 

A regression curve can be used to describe a relationship between a variable of interest and one or more 

related variables that are assumed to have a bearing on the demand forecasting problem. If data are 

plentiful, a curve passing through the bulk of the data represents the regression curve. The data are such 

that there is no functional relationship describing exactly one variable Y as a function of X; for a given 

value of the independent variable X, there is a distribution of values of Y. This relationship may be 

approximated by determining the average (or median) value of Y for small intervals of values of X. 

A regression curve (in a two-variable case) is defined as that “typical” curve that goes through 

the mean value of the dependent variable Y for each fixed value of the independent variable X. 

In many practical situations, there are not enough values to "even pretend that the resulting curve 

has the shape of the regression curve that would arise if we had unlimited data", according to Mosteller 

and Tukey in their Data Analysis and Regression book (1977, p. 266). Instead, the values result in an 

approximation. With only limited data, a shape for the regression curve (e.g., linear, or exponential) is 

assumed and the curve is fitted to the data by using a statistical method such as the method of least 

squares. This method is explained shortly. 

A Simple Linear Model 

Because regression analysis seeks an algebraic relationship between a dependent variable Y and one or 

more independent variables, the deterministic (change) component of the model describes the mean 

(expected) value for Y given a specific value of X: 

Deterministic component = Mean Y, 



when Y is some function of X. In practice, there is considerable variability in Y for a given X around a mean 

value. This mean value is an unknown quantity that is commonly denoted by the Greek letter µ with a 

subscript Y(X) to denote its dependence on X: 

µY(X) = β0 + β1 X 

One key assumption in the linear regression model is that for any value of X, the value of Y is 

scattered around a mean value. 

The straight line may be approximately true; the difference between Y and the straight 

line is ascribed to a random error (“chance”) component. Thus, the observed values of Y 

will not necessarily lie on a straight line in the XY plane but will differ from it by some 

random errors. 

Y = β0 + β1 X + Random errors 

Thus, the simple linear regression model (SLR) for Y can be expressed by the sum of 

a deterministic component µY(X) and a random component ε:  

Y = µY(X) + ε 

   = β0 +β1 X + ε 

where the mean (expected) value of random errors ε is assumed to be zero. The intercept β0 and slope β1 

are known as the regression parameters. The model is linear in the parameters, both β0 and β1 are 

unknown parameters to be estimated from the data. As a standard statistical convention, it is useful to 

designate unknown parameters in models by Greek letters, to distinguish them from the corresponding 

statistics b0 and b1 (in Roman letters) estimated from the data.  

As demand forecasters, we can view the deterministic component as describing a systematic change, 

whereas the random errors depict measured chance in the sense of our notion of embracing both “change 

& chance” for demand forecasting best practices. In a particular application of the model, the demand 

forecaster has data that are assumed to have arisen as a realization of the hypothetical model. The next 

step is to come up with a rationale for estimating the parameters, β0 and β1, in the model from a given set 

of data. 

The Least-Squares Assumption 

There are many techniques around for estimating parameters from data, but the method of ordinary least 

squares (OLS) is the most common and it has a sound basis in statistical theory. This is not to say that 

other techniques have little merit.  

In fact, weighted least-squares techniques of several kinds have been found to have increased 

importance in practical applications of outlier-resistant data analysis methods and robust regression (cf. 

C. Fred. Mosteller and John W. Tukey, Data Analysis and Regression, 1977). 

The method of least squares is the most widely accepted criterion for estimating parameters in 

a model. 

 



Consider now one reasonable criterion for estimating β0 and β1 from data in a simple linear regression 

model. OLS determines values b0 and b1 (Notation is important now because parameters will be estimated 

from data, so we “plug in” lower-case Roman letters b0 and b1 to replace the Greek symbols β0 and β1), so 

that the sum of squared vertical deviations (squared residuals) between the data and a fitted line is less 

than the sum of the squared vertical deviations from any other straight-line fit that could be drawn 

through the data: 

Minimum of Σ(Data - Fit)2 = Σ(Residuals)2 

 

Figure10.1 Example illustrating the calculation of regression coefficients in a simple linear regression. 

Recall Residual = Data - (b0 + b1 X). A vertical deviation is the vertical distance from an observed data 

point to the line. Each deviation in the sample is squared and the least-squares line is defined to be the 

straight line that makes the sum of these squared deviations a minimum. The notation for this is as follows.  

Consider the data pairs (Yi, Xi) for (i = 1, . . . , n). Let yi = Yi - Ȳ and xi = Xi - Ẍ, where Ȳ = (ΣYi)/n, and Ẍ = 

(ΣXi )/n . The symbol Σ denotes the summation over n values. Then Σ D2 = Σ (Yi - b0 - b1 Xi)2 is minimized. 

Figure 10.1 shows the calculations of b0 and b1 for a small set of data. 

CASE:  Sales and Advertising of a Weight Control Product 

The VP of Sales has called you into her office to help plan for an upcoming advertising campaign.  To date, 

much of the planning has used a seat-of-the-pants approach and not entirely satisfactory.  To help improve 

the situation, you recommend investigating some quantitative approaches to the problem. You want to 

gain some familiarity with some methodologies you find in a search on the Internet, and you embark on a 

preliminary analysis of an existing data set.  It is hoped that this investigation will lead to some insights 

that will help tackle your company’s data.   
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